Unusual Fragmentations of Some Polyazaindenes during Perchlorination Reactions

Michael F. DePompei and William W. Paudler

Department of Chemistry, The University of Alabama, University, Alabama 35486

Received September 15, 1975

We have recently described the preparation of perchloroimidazo[1,2-a]pyrazine (1) (1), and perchloroimidaza-

$$C_{1} \xrightarrow{C_{1}} C_{1} \qquad C_{1} \xrightarrow{C_{1}} C_{1} \qquad C_{1} \xrightarrow{C_{1}} C_{1} \qquad C_{1} \xrightarrow{N} N$$

[1,2-a] pyridine (2) (2). Stanovnick, and Tisler (3), on the other hand, have prepared perchlorotriazolo [4,3-b]-pyridazine (3).

Our continuing efforts directed, ultimately at the syntheses of perfluoropolyazaindenes prompted us to attempt the preparation of the perchloroderivatives of compounds 4, 5, 6 and 7.

To our surprise, in no instance did we obtain the expected perchloro derivatives, but instead substantial yields of ring-cleaved products were isolated. In each case, cleavage of bonds a and b had occurred to yield perchloropyrimidine from compounds 4 and 5 and perchloropyridine from compounds 6 and 7.

The structures of these products were readily confirmed by comparisons with authentic samples. A priori, there are two differences between these polyazaindenes, and those earlier perchlorinated by us (1 and 2); one is the presence of a N-N bond (4) and the other is that these compounds contain a HC=N-moiety in the 5-membered ring.

This prompted us to examine the perchlorination of imidazo [1,5-a] pyridine (8) which should yield perchloro-

pyridine if the HC=N- bond rather than the -N-N- bond is required for this fragmentation to occur. In fact, when the reaction was done, only perchloropyridine was obtained. Thus, there does not appear to be a need for having 2 nitrogen atoms in the 5-members ring but rather the presence of a -C=N- structure seems to be indicated.

Another interesting point to mention is that the cyclazine 9, recently described by us (5), does not fragment in the polychlorination reaction, presumably because the -C=N- group is no longer present.

Unfortunately, we have not yet been able to isolate any intermediates in these reactions and consequently any mechanistic discussions would be premature.

Table

Experimental Details

Starting Material	Reaction Temperature	Product	% Yield	М. р.	M. p. Lit.
4	220°	perchloropyrimidine	52%	62-62°	61-63° (11)
5	220°	perchloropyrimidine	58%	60-62°	61-63° (11)
6	240°	perchloropyridine	48%	123-125°	125-126° (12)
7	230°	perchloropyridine	51%	124-126°	125-126° (12)
8	240°	perchloropyridine	61%	124-126°	125-126° (13)

EXPERIMENTAL

All starting materials were prepared by known procedures. s-Triazolo[1,5-a]pyrimidine (5).

This compound was prepared in 73.0% yield, m. p. 140-142°, lit. m. p. 140-142° (6).

s-Triazolo [4,3-a] pyrimidine (4).

This compound was prepared in 76.0% yield, m. p. $208-210^{\circ}$, lit. $210-212^{\circ}$ (7).

Pyrazolo[1,5-a]pyridine (6).

This compound was prepared in 47.0% yield, b. p. 36-38° at 0.02 torr, lit. b. p. 101° at 22 torr (8).

s-Triazolo [4,3-a] pyridine (7).

This compound was prepared in 63.5% yield, m. p. 36-38°, lit. m. p. 36-38° (9).

Imidazo[1,5-a] pyridine (8).

This compound was prepared by the methods of Fuentes and Paudler, in 81.0% yield, m. p. 55-56°, lit. m. p. 55-56° (10).

Perchlorination Reactions.

General procedure: The appropriate polyazaindene was mixed with a 10 fold molar excess of phosphorus pentachloride and was placed into a stainless steel bomb, which was sealed and heated for 4 hours. The bomb was then cooled and ice was carefully added

to decompose the excess phosphorus pentachloride. The resulting solution was then extracted with chloroform (3 x 100 ml.) and the combined extracts were boiled with charcoal for 10 minutes. The filtered solution was dried (sodium carbonate), refiltered and the filtrate was evaporated *in vacuo* to afford product. The products thus obtained were recrystallized from methanol.

REFERENCES AND NOTES

- (1) M. DePompei and W. W. Paudler, J. Heterocyclic Chem., 12, 861 (1975).
- (2) W. W. Paudler, D. J. Pokorny and J. J. Good, *ibid.*, 8, 37 (1971).
 - (3) B. Stanovnik, M. Tisler, Monatsh. Chem., 103, 1624 (1972).
- (4) One wonders however, whether compound 3, might not also be convertible to perchloropyridazine under more severe conditions
- (5) O. Fuentes and W. W. Paudler, J. Heterocyclic Chem., 12, 925 (1975).
- (6) C. F. Allen, H. R. Beilfuss et al., J. Org. Chem., 24, 796 (1959).
 - (7) K. Shirakawa, Yakugaku Zasshi, 79, 903 (1959).
 - (8) J. D. Bower and G. R. Ramage, J. Chem. Soc., 4506 (1957).
 - (9) J. D. Bower and G. R. Ramage, ibid., 4510 (1957).
 - (10) J. D. Bower and G. R. Ramage, ibid., 2834 (1955).
 - (11) H. Gershon, J. Org. Chem., 27, 3507 (1962).
- (12) R. D. Chambers and W. Musgrave, J. Chem. Soc., 3573 (1964).